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1. Introduction

A celebrated theorem of Erdős and Selfridge [14] states that the product of
consecutive positive integers is never a perfect power. A more recent and equally
appealing result is one of Darmon and Merel [11] who proved an old conjecture of
Dénes to the effect that there do not exist three consecutive nth powers in arithmetic
progression, provided n � 3. One common generalization of these problems is to
ask whether it is possible to have a product of consecutive terms in arithmetic
progression equal to a perfect power. In general, the answer to this question is
‘yes’, as the Diophantine equation

n(n + d) . . . (n + (k − 1)d) = yl , for k � 3 and l � 2, (1)

may have infinitely many solutions in positive integers n, d, k, y and l if either the
integers n and d have suitable common factors (as in the example 9 · 18 · 27 · 36 =
543), or (k, l) = (3, 2) and gcd(n, d) = 1 (for example, 1 · 25 · 49 = 352). If, however,
we restrict our attention to progressions with

gcd(n, d) = 1, k � 3, l � 2, (k, l) �= (3, 2), (2)

a number of special finiteness results are available in the literature. Euler (see for
example [13]) showed that then (1) has no solutions if (k, l) = (3, 3) or (4, 2); a
similar statement was obtained by Obláth [26, 27] for the cases (k, l) = (3, 4), (3, 5)
or (5, 2). It has been conjectured by Erdős (as noted in [37]; see also Darmon
and Granville [10]) that (1) (with (2)) has, in fact, no solutions whatsoever. This
conjecture has been recently established by Győry [18] for k = 3 (and l � 3
arbitrary) and by Győry, Hajdu and Saradha [19], in case k = 4 or 5. Unfortunately,
the arguments of [19] are invalid if l = 3; we correct these in § 5 of this paper.

In general, however, it appears to be a very hard problem to prove even that the
number of solutions to (1), with (2), is finite. As a rough indication of its depth, this
does not seem to be a consequence of the ABC Conjecture of Masser and Oesterlé,
unless we further assume that l � 4; see Theorem 7 of [19]. Further work in this
direction, under restrictive hypotheses, includes that of Marszalek [23] (in case d
is fixed), Shorey and Tijdeman [37] (if l and the number of prime divisors of d is
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fixed) and Darmon and Granville [10] (if both k and l are fixed). For a broader
sample of the abundant literature in this area, the reader may wish to consult the
survey articles of Tijdeman [42] and Shorey [35, 36].

In this paper, we will address the problem of establishing finiteness results for
equation (1), under the sole assumption that k is fixed. One of the principal results
of this paper is an extension of the aforementioned work of Győry [18] and Győry,
Hajdu and Saradha [19] to k � 11 (with a requisite correction of the latter work,
in case l = 3).

Theorem 1.1. The product of k consecutive terms in a coprime positive
arithmetic progression with 4 � k � 11 can never be a perfect power.

By coprime progression, we mean one of the form

n, n + d, . . . , n + (k − 1)d

with gcd(n, d) = 1. We should emphasize that this does not follow as a mere
computational sharpening of the approach utilized in [18] or [19], but instead
necessitates the introduction of fundamentally new ideas. Indeed, the principal
novelty of this paper is the combination of a new approach for solving ternary
Diophantine equations under additional arithmetic assumptions, via Frey curves
and modular Galois representations, with classical (and not so classical!) results
on lower degree equations representing curves of small (positive) genus. Further,
for the most part, our results do not follow from straightforward application of the
modularity of Galois representations attached to Frey curves, but instead require
additional understanding of the reduction types of these curves at certain small
primes.

Theorem 1.1 is, in fact, an immediate consequence of a more general result. Before
we state this, let us introduce some notation. Define, for an integer m with |m| > 1,
P (m) and ω(m) to be the largest prime dividing m and the number of distinct prime
divisors of m, respectively (where we take P (±1) = 1 and ω(±1) = 0). Further, let
us write

Π (i1, i2, . . . , it) = (n + i1d)(n + i2d) . . . (n + itd) (3)

and

Πk = Π(0, 1, 2, . . . , k − 1) = n(n + d)(n + 2d) . . . (n + (k − 1)d). (4)

With these definitions, we have the following theorem.

Theorem 1.2. Suppose that k and l are integers with 3 � k � 11, l � 2 prime,
and (k, l) �= (3, 2), and that n and d are coprime integers with d > 0. If, further,
b and y are non-zero integers with P (b) � Pk,l where Pk,l is as shown in Table 1,
then the only solutions to the Diophantine equation

Π = Πk = byl (5)

are with (n, d, k) in the following list:

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9), (−6, 1, 6), (−6, 5, 4),
(−5, 2, 6), (−4, 1, 4), (−4, 3, 3), (−3, 2, 4), (−2, 3, 3), (1, 1, 4), (1, 1, 6).
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Table 1. Pk ,l for 3 � k � 11 and l � 2.

k l = 2 l = 3 l = 5 l � 7

3 – 2 2 2

4 2 3 2 2

5 3 3 3 2

6 5 5 5 2

7 5 5 5 3

8 5 5 5 3

9 5 5 5 3

10 5 5 5 3

11 5 5 5 5

For k = 3, this theorem was proved in [18]. Our Theorem 1.2 sharpens and
generalizes the corresponding results of [19], which treated the cases k = 4 and 5
(with l �= 3). Note that the upper bound on P (b) in the above theorem may be
replaced in all cases by the slightly stronger but simpler bound

P (b) < max{3, k/2}, (6)

leading to a cleaner but weaker theorem. Further, in cases (k, l) = (4, 2) and (3, 3),
the result is best possible (in the sense that Pk,l cannot be replaced by a larger
value). This is almost certainly not true for other values of (k, l).

It is a routine matter to extend Theorem 1.2 to arbitrary (that is, not necessarily
prime) values of l. For (k, l) = (3, 4), equation (5) has no solutions with (6); cf.
Theorem 8 of [19]. For all other pairs (k, l) under consideration, Theorem 1.2 yields
the following result.

Corollary 1.3. Suppose that n, d and k are as in Theorem 1.2, and that l � 2
is an integer with (k, l) �= (3, 2). If, further, b and y are non-zero integers with (6),
then the only solutions to equation (5) are with (n, d, k) in the following list:

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9),
(−6, 5, 4), (−5, 2, 6), (−4, 3, 3), (−3, 2, 4), (−2, 3, 3).

Note that knowing the values of the unknowns on the left-hand side of (5), one
can easily determine all the solutions (n, d, k, b, y, l) to (5).

In the special case d = 1, the set of solutions of equation (5), for k � 2 fixed,
has been described in [17, 20, 31], under less restrictive assumptions upon b. For
further partial results on (5), we refer again to the survey papers [18, 35, 36, 42].

For fixed values of k � 3 and l � 2 with k+l > 6, equation (5) has at most finitely
many solutions in positive integers (n, d, b, y) with gcd(n, d) = 1 and P (b) � k; see
Theorem 6 of [19].

If we turn our attention to k > 11, we may prove a number of results of a similar
flavour to Theorem 1.2, only with a corresponding loss of precision. If k is slightly
larger than 11, we have the following theorem.

Theorem 1.4. If 12 � k � 82, then there are at most finitely many non-zero
integers n, d, l, b and y with gcd(n, d) = 1, l � 2 and satisfying (5), with P (b) < k/2.
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Moreover, for all such solutions to (5), we have

log P (l) < 3k .

For arbitrary values of k, we may deduce finiteness results for equations (1) and
(5), only under certain arithmetic assumptions. Write

Dk =
∏

k/2�p<k

p (7)

where the product is over prime p.

Theorem 1.5. If k � 4 is fixed, then the Diophantine equation (5) has at most
finitely many solutions in positive integers n, d, b, y and l with

gcd(n, d) = 1, y > 1, l > 1, P (b) < k/2 and d �≡ 0 (mod Dk ).

For each such solution, we necessarily have log P (l) < 3k .

A corollary of this which yields a finiteness result for (1), provided k is suitably
large (relative to the number of prime divisors of d), is the following.

Corollary 1.6. Let D be a positive integer and suppose that k is a fixed
integer satisfying

k �
{

4 if D ∈ {1, 2},
6D log D if D � 3.

(8)

Then the Diophantine equation (5) has at most finitely many solutions in positive
integers n, d, b, y and l with

gcd(n, d) = 1, y > 1, l > 1, ω(d) � D, and P (b) < k/2.

We remark that a sharp version of this result, in the special case l = 2 and
b = D = 1, was recently obtained by Saradha and Shorey [33].

Finally, we mention an application of Theorem 1.2 to a family of superelliptic
equations first studied by Sander [30]. Specifically, let us consider equations of the
form

x(x + 1) . . . (x + k − 1) = ±2αzl (9)

where x and z are rational numbers with z � 0, and k, l and α are integers with
k, l � 2 and −l < α < l. If −l < α < 0, by replacing α and z in (9) with l + α and
z/2, respectively, we may restrict ourselves to the case where α is non-negative.

If x and z are further assumed to be integers and α = 0, then, by the result of
Erdős and Selfridge [14], we find that the only solutions to (9) are with z = 0. Since
these are also solutions of (9) for each α, we will henceforth refer to them as trivial;
in what follows, we shall consider only non-trivial solutions. Let us return to the
more general situation when x, z ∈ Q. By putting x = n/d and z = y/u with integers
n, d, y and u such that gcd(n, d) = gcd(y, u) = 1, d > 0, y � 0 and u > 0, we see
that (9) reduces to equation (5) with P (b) � 2 and (by comparing denominators)
satisfying the additional constraint that ul = 2γ dk for some non-negative integer
γ. An almost immediate consequence of Theorem 1.2 is the following.
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Corollary 1.7. Let 2 � k � 11 and l � 2 with (k, l) �= (2, 2) (and, if α > 0,
(k, l) �= (2, 4)). Then the only non-trivial solutions of (9) with 0 � α < l are those
(x, k) in the following list:

(−9/2, 9), (−9/2, 10), (−7/2, 8), (−7/2, 9), (−5/2, 6), (−2, 2),
(−3/2, 4), (−4/3, 3), (−2/3, 3), (−1/2, 2), (1, 2).

This result follows easily from Theorem 1.2; the reader is directed to [19] for
the necessary arguments. Indeed, in [19], our Corollary 1.7 is established for l � 4,
k = 3, 4 and, if α = 0 and k = 5. If 2 � k � 4, l > 2 and α = 0, Sander [30]
completely solved equation (9) and noted that, for (k, l) = (2, 2), there are, in fact,
infinitely many solutions. We remark, however, that the solutions listed in Corollary
1.7 for k = 3 and 4 are missing from Sander’s result. Further, as discussed in [19],
the assumption (k, l) �= (2, 4) (if α > 0) is necessary, since, in that case, equation
(9) has, again, infinitely many solutions.

The structure of this paper is as follows. In the second section, we will
indicate how the problem of solving equation (5) may be translated to a question
of determining solutions to ternary Diophantine equations. In §§ 3–6, we prove
Theorem 1.2 for, respectively, prime l � 7, l = 2, l = 3 and l = 5. In many
cases, for l = 2 or 3, the problem may be reduced to one of finding the torsion
points on certain rank 0 elliptic curves E/Q. In a number of situations, however,
this approach proves inadequate to deduce the desired result. We instead turn to
recent explicit Chabauty techniques due to Bruin and Flynn [6]; we encounter some
interesting variations between the cases with l = 2 and those with l = 3. If l = 5,
we depend on either classical results of Dirichlet, Lebesgue, Maillet (cf. [13]), Dénes
[12] and Győry [16] on generalized Fermat equations of the shape Xl + Y l = CZl ,
or recent work of Kraus [21]. For l � 7, we apply recent results of the first author
and Skinner [1], together with some refinements of these techniques; our proofs
are based upon Frey curves and the theory of Galois representations and modular
forms. Section 7 is devoted to the proof of Theorem 1.5. Finally, we conclude the
paper by considering values of k with 12 � k � 82.

2. The transition to ternary equations

For virtually every argument in this paper, we will rely heavily on the fact that a
‘non-trivial’ solution to (5) implies a number of similar solutions to related ternary
Diophantine equations which we may, if all goes well, be able to treat with the
various tools at our disposal. The only situation where we will not follow this
approach is in § 4 (that is, when l = 2). From equation (5) and the fact that
gcd(n, d) = 1, we may write

n + id = biy
l
i for 0 � i � k − 1, (10)

where bi and yi are integers with P (bi) < k. We note that, in terms of bi , such
a representation is not necessarily unique. We will thus assume, unless otherwise
stated, that each bi is lth power free and, if l is odd, positive.

Let us first observe that any three of the linear forms n + id, for 0 � i � k − 1,
are linearly dependent. In particular, given distinct integers 0 � q, r, s � k − 1, we
may find relatively prime non-zero integers λq , λr , λs , for which

λq (n + qd) + λr (n + rd) = λs(n + sd). (11)
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It follows from (10) that, writing

A = λqbq , B = λrbr , C = λsbs , and (u, v, z) = (yq , yr , ys),

we have

Aul + Bvl = Czl, (12)

where it is straightforward to show that P (ABC) < k. This is a ternary Diophantine
equation of signature (l, l, l). In case l = 3, 5 and, sometimes, l � 7, we will prove
Theorem 1.2 through analysis of such equations. In the sequel, we will employ the
shorthand [q, r, s] to refer to an identity of the form (11) (and hence a corresponding
equation (12)), because given distinct integers q, r and s, coprime non-zero integers
λq , λr and λs satisfying (11) are unique up to sign.

A second approach to deriving ternary equations from a solution to (5) proves
to be particularly useful for larger values of (prime) l. If p, q, r and s are integers
with

0 � p < q � r < s � k − 1 and p + s = q + r,

then we may observe that

(n + qd)(n + rd) − (n + pd)(n + sd) = (qr − ps)d2 �= 0. (13)

It follows that identity (13) implies (non-trivial) solutions to Diophantine equations
of the form

Aul + Bvl = Cz2 (14)

with P (AB) < k, for each quadruple {p, q, r, s}. This is a ternary Diophantine
equation of signature (l, l, 2). Henceforth, we will use the shorthand {p, q, r, s} to
refer to an identity of the form (13).

Our arguments will rely upon the fact that a triple [q, r, s] or quadruple {p, q, r, s}
can always be chosen such that the resulting equation (12) or (14) is one that we may
treat with techniques from the theory of Galois representations and modular forms,
or, perhaps, with a more classical approach. In essence, once we have established
certain results on the equations (12) and (14), as we shall see, this can be regarded
as a purely combinatorial problem.

3. Proof of Theorem 1.2 in case l � 7

We will primarily treat equation (5) with prime exponent l � 7 by reducing the
problem to one of determining the solvability of equations of the shape (14). For a
more detailed discussion of these matters, the reader is directed to [1, 11, 22, 25].
We begin by cataloguing the required results on such ternary equations.

Proposition 3.1. Let l � 7 be prime, α and β be non-negative integers, and let
A and B be coprime non-zero integers. Then the following Diophantine equations
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have no solutions in non-zero coprime integers (x, y, z) with xy �= ±1:

xl + 2αyl = 3β z2, α �= 1, (15)

xl + 2αyl = z2 with p | xy for p ∈ {3, 5, 7}, (16)

xl + 2αyl = 3z2 with p | xy for p ∈ {5, 7}, (17)

xl + yl = Dz2, D ∈ {2, 6}, (18)

xl + 3αyl = 2z2 with p | xy for p ∈ {5, 7}, l � 11, (19)

xl + 5αyl = 2z2 with l � 11 if α > 0, (20)

Axl + Byl = z2, AB = 2αpβ , α � 6, p ∈ {3, 5, 13}, (21)

Axl + Byl = z2, AB = 2αpβ , α �= 1, p ∈ {11, 19}, (22)

Axl + Byl = z2, P (AB) � 3, with p | xy for p ∈ {5, 7}, (23)

Axl + Byl = z2, P (AB) � 5, with 7 | xy and l � 11. (24)

In each instance where we refer to a prime p, we further suppose that the exponent
l > p.

Proof. We begin by noting that the stated results for equations (15), (18), (20)
and (22) are, essentially, available in a paper by Bennett and Skinner [1]. The cases
of equation (21) with p = 3 or 5, and β � 1, while not all explicitly treated in
[1], follow immediately from the arguments of that paper, upon noting that the
modular curves X0(N) have genus 0 for all N dividing 6 or 10.

For the remaining equations, we will begin by employing the approach of [1].
Specifically, to a putative non-trivial solution of one of the preceding equations, we
associate a Frey curve E/Q (see [1] for details), with corresponding mod l Galois
representation

ρE
l : Gal(Q/Q) → GL2(Fl)

on the l-torsion E[l] of E. Via Lemmata 3.2 and 3.3 of [1], this representation arises
from a cuspidal newform f of weight 2 and trivial Nebentypus character. The level
N of this newform may be shown to satisfy

N ∈ {20, 24, 30, 40, 96, 120, 128, 160, 384, 480, 640, 768, 1152, 1920}
(for example, a non-trivial solution to (16) with α = 1 and x and y odd necessarily
leads to a newform of level 128; for details, the reader is directed to Lemma 3.2 of
[1]). The assumption that p | xy for p ∈ {3, 5, 7} implies, if p is coprime to lN , that

trace ρE
l (Frobp) = ±(p + 1).

It follows, if f has Fourier coefficients an in a number field Kf , that

NormKf /Q (ap ± (p + 1)) ≡ 0 (mod l). (25)

Using William Stein’s ‘Modular Forms Database’ [38], we find ap , with p ∈
{3, 5, 7}, for each newform at the levels N of interest, provided p is coprime to
N . In most cases the corresponding Fourier coefficients are even integers: from
the Weil bounds, a3 ∈ {0,±2} (if 3 � N), a5 ∈ {0,±2,±4} (if 5 is coprime to
N) and a7 ∈ {0,±2,±4} (if 7 fails to divide N). Congruence (25) thus implies a
contradiction for these forms. The only forms f encountered with Kf �= Q are (in
Stein’s notation) form 3 at level 160, forms 9–12 at level 640, forms 9–12 at level
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768 and forms 25–28 at level 1920. In the case of form 3, N = 160, we find that
a7 = ±2

√
2 and so 2

√
2 ≡ ±8 (mod P) for some prime P lying over l. It follows

that l | 56 and so l = 7. Similarly, form 9 at level 672 has a7 = −ϑ − 2 where
ϑ2 + 2ϑ − 4 = 0. From a7 ≡ ±8 (mod P) we thus have ϑ ≡ 6 (mod P) (whereby
l = 11) or ϑ ≡ −10 (mod P) (whence l = 19). On the other hand, a3 = ϑ and
hence, from the Weil bounds, ϑ ≡ 0,±2,±4 (mod P), a contradiction in each case.
Arguing in a like fashion for the remaining forms completes the proof.

We will also need a result on equations of signature (l, l, l). Specifically, we apply
the following.

Proposition 3.2. Let l � 3 and α � 0 be integers. Then the Diophantine
equation

Xl + Y l = 2αZl (26)

has no solutions in coprime non-zero integers X, Y and Z with XY Z �= ±1.

Proof. This is essentially due to Wiles [43] (in case l | α), Darmon and Merel
[11] (if α ≡ 1 (mod l)) and Ribet [28] (in the remaining cases for l � 5 prime); see
also Győry [18].

Let us begin the proof of Theorem 1.2. For the remainder of this section, we will
suppose that there exists a solution to equation (5) in non-zero integers n, d, k, y, l
and b with n and d > 0 coprime, 3 � k � 11, and l � 7 prime. We suppose further
that b satisfies (6). We treat each value 3 � k � 11 in turn.

3.1. The case k = 3

If k = 3, the identity {0, 1, 1, 2} yields solutions to an equation of the shape (15)
with β = 0 and α = 0 (if Π is odd) or α � 2 (if Π is even). By Proposition 3.1,
after a modicum of work, we obtain the solutions (n, d, k) = (−4, 3, 3) and (−2, 3, 3)
listed in the statement of Theorem 1.2.

3.2. The case k = 4

If n is coprime to 3, we may use the same identity as for k = 3 to deduce that
there is no solution to (5). If 3 | n, then {0, 1, 2, 3} gives an equation of type (18)
with D = 2 (if Π is odd), and one of the form (16) with p = 3 (if Π is even). In
either case, we infer from Proposition 3.1 that equation (5) has no solution.

3.3. The case k = 5

Considering the product of the first or the last four terms of Π, according as 3 | n,
or not, we may reduce this to the preceding case and reach the desired conclusion.

3.4. The case k = 6

If k = 6 and 5 fails to divide n, then we may apply what we have for the case
k = 4 to the product of the first, middle or last four terms of Π, to find that there
is no solution to (5). Similarly, if 3 � n(n + 5d), the middle four terms lead to a
contradiction. Thus we may suppose that 5 | n, and, by symmetry, that also 3 | n.
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Considering the identity {0, 1, 4, 5} (if Π is odd) or {0, 2, 3, 5} (if Π is even), we
obtain an equation of the shape (23) with p = 5. We can thus apply Proposition 3.1
to conclude that (5) has no solution with k = 6 and l � 7 prime.

3.5. The case k = 7

Next, let k = 7. If 5 � n(n+ d), then we may apply {1, 2, 4, 5} (if 3 | n) or {0, 3, 3, 6}
(if 3 � n). These lead to equations of type (15). Next, suppose that 5 | n(n + d);
by symmetry, we may assume 5 | n. Suppose first that 6 | Π, and consider the
identity {0, 2, 3, 5}. If 3 | n + d, we are led to an equation of the shape (16) or (17),
with p = 5. On the other hand, if 3 | n(n + 2d), then the same identity induces an
equation of the form (23), again with p = 5.

Assume now that 6 � Π, and consider {0, 1, 4, 5}. If gcd(Π, 6) = 3, this identity
gives equation (23) with p = 5. If, however, gcd(Π, 6) = 2, then the same identity
leads either to (16) with p = 5 or to (18), with D = 2. Finally, if gcd(Π, 6) = 1, then
again employing the identity {0, 1, 4, 5}, we find a solution to (15) with α = β = 0.
In all cases, we conclude from Proposition 3.1 that (5) has no solution, in the
situation under consideration.

3.6. A diversion

In case k � 8, in a number of instances, Proposition 3.1 enables us to prove our
statement only for l � 11 prime. We are thus forced to deal with the exponent
l = 7 separately. As we shall observe, in each case where we encounter difficulties
for l = 7, there are precisely two distinct factors in Π which are divisible by 7.
By our assumptions, 7 | ν7(Π) where, here and henceforth, we write νp(m) for the
largest integer t such that pt divides a non-zero integer m. It follows that one of
these two factors is necessarily divisible by 72. We will use the following argument
to finish the proof in this case.

Choose three factors n+qd, n+rd and n+sd of Π, such that one of them, n+qd
say, is divisible by 72, but 7 fails to divide (n + rd)(n + sd). The identity [q, r, s]
thus yields

λrbry
7
r ≡ λsbsy

7
s (mod 72),

whence, upon taking sixth powers, it follows that

u6 ≡ v6 (mod 72), (27)

where u = λrbr and v = λsbs . If we choose n+ qd, n+ rd and n+ sd appropriately,
then we can use the fact that, for a ≡ uv−1 (mod 72),

a6 ≡ 1 (mod 72) ⇐⇒ a ≡ ±1,±18,±19 (mod 72) (28)

to obtain a contradiction, thereby verifying that (5) has no solution in the case in
question.

3.7. The case k = 8

Let us return to our proof. Suppose k = 8. If 7 � n, then we may reduce to the
preceding case by considering the first or last seven terms of Π. Suppose, then, that
7 | n. Notice that if gcd(Π, 15) = 1, then we may apply our results with k = 6 to
the middle six terms of Π to conclude that (5) has no solution. If 5 � Π, it therefore
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follows that 3 | Π. If 3 | n or 3 | n+d, using {1, 2, 4, 5} or {2, 3, 5, 6} respectively, we
are led to an equation of the shape (15) with β = 1, contradicting Proposition 3.1.
If 3 | n + 2d, then the identity {0, 1, 6, 7} gives rise to an equation of the form (18)
with D = 6, if Π is odd, and of the form

xl + 2αyl = 3z2, (29)

if Π is even. We may apply Proposition 3.1 again, unless α = 1, that is, unless
ν2(n + id) = 2 for one of i = 0, 1, 6, 7. If this last condition occurs, it follows that
ν2(n + jd) � 3 for one of j = 2, 3, 4, 5. For this j, the identity {j − 1, j, j, j + 1}
leads to an equation of the form (21) with p = 3. By Proposition 3.1, we infer that
(5) has no solution in this case.

We may thus suppose that 5 | Π. If 3 � Π, then we may apply our results obtained
for k = 3 to Π(i, i + 1, i + 2) with an appropriate i = 1, 3 or 4 to conclude that
there is no solution in this case. We may therefore assume that 15 | Π. Further, if
5 | (n + 3d)(n + 4d), we can argue as previously to obtain a contradiction. Hence
we may suppose that 5 | n(n + d)(n + 2d). Assume first that 5 | n + d. If Π is odd,
then the identity {1, 2, 5, 6} leads to (23) with p = 5 and so, via Proposition 3.1, a
contradiction. If Π is even, then we consider the identity {1, 3, 4, 6}. If 3 | n+2d, we
are led to an equation of the form (17) with p = 5. On the other hand, if 3 | n(n+d),
then we find a non-trivial solution to (23) with p = 5. In either case, we contradict
Proposition 3.1.

To complete the proof of Theorem 1.2, in case k = 8, we may thus, by symmetry,
suppose that 5 | n. We divide our proof into two parts. First suppose that l � 11
prime.

We begin with the case where 3 | n. Necessarily, one of n, n + 3d or n + 6d is
divisible by 9. If 9 | n, then {1, 3, 4, 6} gives rise to an equation of the form (18) with
D = 2, at least provided Π is odd. When Π is even, the identity {0, 2, 5, 7} yields
(24) and hence a contradiction. If 9 | n + 3d, {0, 1, 6, 7} leads to (20), if Π is odd.
If Π is even, from the same identity we have (24). By Proposition 3.1, in each case,
we conclude that there is no solution to (5). Finally, if 9 | n + 6d, then the identity
{0, 3, 4, 7} provides either (20) or (24). In both cases, we have a contradiction, at
least for l � 11 prime.

We argue in a similar fashion if 3 | n+d or 3 | n+2d. In the first of these cases, one
of the identities {0, 3, 4, 7}, {0, 1, 6, 7}, {1, 3, 4, 6} or {0, 2, 5, 7}, necessarily implies
solutions to either (20) or (24). In the second, either {1, 3, 4, 6} yields a solution to
(18) with D = 6, or {0, 2, 5, 7} provides one to equation (24). By Proposition 3.1,
we thus derive a contradiction, in all cases, for l � 11 prime.

Now suppose that l = 7. We use the argument outlined in § 3.6; that is, we appeal
to identities of the form (11), corresponding to triples [q, r, s].

Assume first that, together with 5 | n, we have 3 | n. Since, necessarily, either n
or n + 7d is divisible by 72, we distinguish two cases. Suppose first that 72 | n, and
consider the identity [0, 2, 4]. This implies a congruence of the form

(
2ν2(b2)+1

)6 ≡
(
2ν2(b4)

)6 (mod 72),

whereby, from (28), (ν2(b2), ν2(b4)) = (0, 1) or (1, 2). From the identity {1, 2, 2, 3},
if ν2(n + 2d) � 3, we derive a non-trivial solution to (21) with p = 3, contrary to
Proposition 3.1. We conclude, then, that ν2(n+2d) = 1 (and hence ν2(n+6d) = 1).
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It thus follows, from [0, 3, 6], that
(
3ν3(b3)

)6 ≡
(
3ν3(b6)

)6
(mod 72)

and so ν3(b3) = ν3(b6) = 1. The identity [3, 4, 6] thus leads to a non-trivial solution
to equation (26), with n = 7 and α = 1, contradicting Proposition 3.2.

We next suppose that 72 | n + 7d. If 2 � Π, then [1, 4, 7] immediately contradicts
(28). If 2 | n, arguing as previously, we find, from [1, 3, 7], that ν3(b3) = 4 and
hence [2, 3, 7] implies that ν2(b2) = 6. If, however, 2 | n+d, [4, 6, 7] gives ν3(b6) = 6
whence, from [3, 6, 7], we have ν2(b3) = 6. In either case, [3, 4, 7] now contradicts
(28).

Assume next that 3 | n+d. Suppose first that 72 | n. The identity [0, 2, 6] implies
that (

3 · 2ν2(b2)
)6 ≡

(
2ν2(b6)

)6 (mod 72)

and so

ν2(b6) − ν2(b2) ∈ {−4, 3}. (30)

On the other hand, [0, 3, 6] implies that ν2(b6) = 1, contradicting (30) (since we
have min{ν2(n + 2d), ν2(n + 6d)} � 2).

Next, let 72 | n + 7d. In this case, the identity [2, 6, 7] plays the role of [0, 2, 6] in
the previous situation. We have

2(b2) − ν2(b6) ∈ {−4, 3}

and hence, since [3, 6, 7] implies that ν2(b6) = 5, again a contradiction.
Finally, suppose that 3 | n + 2d. As the situation with Π odd was covered

previously for l = 7, we need distinguish only two cases. If 2 | n, then [0, 1, 3]
(if 72 | n) or [1, 3, 7] (if 72 | n + 7d) each contradict (28). If, however, 2 | n + d,
the identities [0, 4, 6] and [4, 6, 7] play a like role. This completes the proof of
Theorem 1.2 for k = 8 and l � 7 prime.

3.8. The case k = 9

Next, consider k = 9. Symmetry allows us to assume that 7 | n, otherwise we
can reduce to the preceding situation. We may also assume that 5 | n + 3d, or,
by applying our results with k = 8 to the first eight terms of Π, again obtain a
contradiction. If 3 fails to divide the product Π, then we may use what we have
proved already for k = 3, via consideration of Π(4, 5, 6), to deduce a contradiction. If
3 | n, then {1, 2, 4, 5} yields (15) with β = 1. Similarly, if 3 | n + d, then {3, 5, 6, 8}
provides (18) with D = 6 if Π is odd, and (17) with p = 5 if Π is even. Using
Proposition 3.1, we obtain contradictions in either case. If 3 | n + 2d, then the
identity {0, 1, 6, 7} gives rise to an equation of the shape (18) with D = 6 if Π is
odd, while {3, 5, 6, 8} leads to an equation of the form (23) with p = 5 if Π is even.
Applying Proposition 3.1 thus completes the proof of Theorem 1.2, in case k = 9
and l � 7 prime.

3.9. The case k = 10

When k = 10, we reduce to the preceding case unless either 7 | n and 5 | n + 9d,
or 5 | n and 7 | n + 9d. By symmetry, we may suppose that the first of these
occurs. Then, if 3 � Π, we may apply our result with k = 3 for Π(1, 2, 3) to obtain
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a contradiction. In case 3 | n(n + d), {2, 5, 5, 8} yields (15) with β = 0, providing
a contradiction by Proposition 3.1. We thus suppose that 3 | n + 2d. To complete
the proof of Theorem 1.2 in this case, we will utilize Proposition 3.2. Necessarily,
precisely one of n + 2d, n + 5d or n + 8d is divisible by 9. If 9 | n + 2d, the
identity [5, 6, 8] implies a non-trivial solution to (26), contradicting Proposition 3.2.
Similarly, if 9 | n + 5d or 9 | n + 8d, application of [2, 3, 8] or [2, 3, 5], respectively,
leads to a contradiction. We conclude, then, that equation (5) has no solution, with
k = 10 and, again, prime l � 7.

3.10. The case k = 11

Finally, let k = 11. If 5 � Π, then we may apply the results from the preceding case
to the first or last ten terms of Π, to obtain a contradiction. If 5 | Π, we will, as when
k = 10, repeatedly appeal to Proposition 3.2 to complete the proof. In what follows,
we will assume, via symmetry, that either 7 � Π or 7 | (n + 4d)(n + 5d)(n + 6d), or
that 7 | n(n + d). The last case is the only one in which 7 | bi for some 0 � i � 10.

Let us begin by supposing that 5 | n. From the identity {3, 6, 6, 9}, we deduce
a solution to (15) unless 3 | n. If 3 | n, then 9 divides exactly one of n, n + 3d or
n + 6d. If 9 | n, then [3, 4, 6] thus implies a (non-trivial) solution to (26), contrary
to Proposition 3.2. Similarly, [6, 7, 9] (if 7 | n + d) and [6, 8, 9] (in the remaining
cases) lead to the same conclusion if 9 | n + 3d. Finally, if 9 | n + 6d, we may apply
[3, 7, 9] (if 7 | n + d) and [1, 3, 9] (in the remaining cases) to reach a contradiction.

In case 5 | n + id for i = 1, 2 or 4, we argue similarly. In the first of these cases,
either {4, 7, 7, 10} (if 7 | n + d) or {2, 5, 5, 8} (otherwise) implies that 3 | n + d
(respectively, 3 | n+ 2d). The identities [4, 5, 7], [7, 9, 10] and [2, 4, 10] (respectively,
[2, 3, 5], [5, 7, 8] and [2, 4, 8]) thus combine to contradict Proposition 3.2. If 5 | n+2d,
{3, 6, 6, 9} leads to the conclusion that 3 | n, whereby [3, 4, 6], [3, 5, 9] and either
[0, 4, 6] (if 7 | n + d) or [6, 8, 9] (in all other cases) provide the desired conclusion.
If 5 | n + 4d, we combine the identities {2, 5, 5, 8}, [2, 3, 5], [5, 6, 8] and [2, 8, 10] (if
7 | n), or {0, 3, 3, 6}, [0, 2, 3], [3, 5, 6] and [0, 2, 6] (in all other cases) to obtain a
contradiction.

It remains, then, to deal with the possibility that 5 | n + 3d. In this situation,
we require a somewhat more involved argument. If n is not divisible by 7, then
{4, 7, 7, 10}, together with Proposition 3.1, implies that 3 | n + d, whereby one of
[4, 6, 7], [7, 9, 10] or [2, 4, 10] contradicts Proposition 3.2. We may thus suppose that
7 | n. In this case, {1, 2, 4, 5} yields a solution to (15) unless 3 | (n + d)(n + 2d). If
3 | n + 2d, then {0, 1, 6, 7} implies a solution to either (15) or (18) (with D = 6),
unless

max{ν2(n + id) : i = 0, 1, 6, 7} = 2. (31)

In the latter case, from {0, 1, 6, 7}, we have a solution to (17) (with p = 7) and
hence may conclude further that l = 7. If 72 | n, the identity [0, 1, 9] implies that

(
9 · 2ν2(b1)

)6 ≡
(
2ν2(b9)

)6 (mod 72),

contrary to (31). If 72 | n + 7d, then, from [1, 7, 9],
(
3 · 2ν2(b9)

)6 ≡
(
2ν2(b1)

)6 (mod 72),

again contradicting (31).
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Finally, if 3 | n + d, from {2, 5, 6, 9}, we deduce solutions to either (15) or (18)
(with D = 6), unless

max{ν2(n + id) : i = 2, 5, 6, 9} = 3. (32)

In this case, {0, 1, 6, 7} implies solutions to equation (24) and so, via Proposition 3.1,
we may assume further that l = 7. If 72 | n, then [0, 2, 6] gives(

3 · 2ν2(b2)
)6 ≡

(
2ν2(b6)

)6 (mod 72),

contradicting (32). If 72 | n + 7d, then [2, 6, 7] yields(
5 · 2ν2(b6)

)6 ≡
(
2ν2(b2)

)6 (mod 72),

again contrary to (32). This completes the proof of Theorem 1.2, in case l � 7 is
prime.

4. Proof of Theorem 1.2 in case l = 2

Having disposed of the possibility of equation (5) having solutions with l divisible
by a large prime, we are now left with the task of dealing with the primes l =
2, 3 and 5. In this section, we treat the first of these cases. For l = 2 and fixed
k � 4, a solution to (5) corresponds to a rational point on one of finitely many
hyperelliptic curves. Our argument will essentially rely upon the fact that, with the
given restrictions on b, the curves in question may often be shown to cover elliptic
curves of rank 0 over Q.

4.1. The case k = 4

In case k = 4, we actually deduce a stronger result, which will prove useful for
larger values of k.

Lemma 4.1. The only solutions in coprime non-zero integers n and d, with
d > 0, and non-zero integer y, to the Diophantine equations

Π(0, 1, 2, 3) = by2, b ∈ {±1,±2,±3, 5,−6, 15,−30}, (33)
Π(0, 1, 2, 4) = by2, b ∈ {−1,±2,±3, 5, 6,±10,−15,−30}, (34)
Π(0, 1, 3, 4) = by2, b ∈ {±1,±2,±3,−5, 6,−15, 30}, (35)
Π(0, 1, 2, 5) = by2, b ∈ {−1,±2, 3,±5, 6,±10,±15}, (36)

correspond to the identities

(−3) · (−1) · 1 · 3 = 32 and (−2) · (−1) · 1 · 2 = 22.

We remark that, by symmetry, results for Π(0, 1, 2, 4) and Π(0, 1, 2, 5) lead to
similar statements for Π(0, 2, 3, 4) and Π(0, 3, 4, 5), respectively. Further, we may
translate a claim for Π(0, p, q, r) to one for Π(i, p + i, q + i, r + i), for any i ∈ Z.

Proof. Via the change of variables

X = pqb

(
rd + n

n

)
, Y =

pqryb2

n2
,
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if p, q and r are integers with

0 < p < q < r,

solutions in non-zero integers n, d and y to

Π(0, p, q, r) = by2 (37)

correspond to rational points (X,Y ) on the elliptic curve

E : Y 2 = X(X + p(r − q)b)(X + q(r − p)b).

The lemma follows from the observation that, for the choices of p, q, r and b
described above, the curves E = E(p, q, r, b) have rank 0 over Q (together with a
routine calculation to ensure that the torsion points yield only the stated solutions
to (37)). For the given triples (p, q, r) and all other values of b dividing 30, the
curves E have positive rank (and hence the equations (37) have, for these p, q, r
and b, infinitely many solutions in non-zero coprime integers n and d). To verify
these facts requires a routine computation in, say, mwrank (though Magma or other
symbolic computation packages would be equally suitable). By way of example, if
(p, q, r) = (1, 2, 3), the elliptic curves corresponding to (37) are birational to the
following curves listed in Table 2 (where we adopt the notation of Cremona [9]).

Table 2. Curves birational to the elliptic curves corresponding to (37).

b Cremona b Cremona b Cremona b Cremona

1 24A 3 144B 6 576I 15 3600K
−1 48A −3 72A −6 576D −15 1800S

2 192C 5 600D 10 4800C 30 14400SSSS
−2 192D −5 1200A −10 4800BBB −30 14400X

If b ∈ {±1,±2,±3, 5,−6, 15,−30}, then it is readily checked that the correspond-
ing curves have rank 0. In all cases, except for b = 1, we have E(Q)tors isomorphic
to Z/2Z×Z/2Z, where the torsion points map back to only the trivial solutions to
(37), with n/d = 0,−p,−q,−r and y = 0. If b = 1, then there are additional torsion
points given by (X,Y ) = (−2,±2) and (2,±6). The latter of these corresponds to
a solution to (37) with d = 0, while the former yields (n, d) = (−3, 2).

For the remaining triples (p, q, r), we argue similarly. In all cases, for the stated
values of b, we find rank 0 curves with

E(Q)tors � Z/2Z × Z/2Z,

unless (p, q, r, b) = (1, 3, 4, 1), in which case

E(Q) � Z/2Z × Z/4Z.

The additional torsion points, on this model of Cremona’s 48A, correspond to,
again, a trivial solution to (5), and to the case (n, d) = (−2, 1).

4.2. The case k = 5

Next, let k = 5. By the above results for equation (33), if we write S(m) for the
square-free integer of maximum modulus dividing m, it follows, recalling (10), that

S(b0b1b2b3) = S(b1b2b3b4) = 6.

Multiplying these two terms together, we conclude that S(b0b4) = 1 and so, since
d > 0 implies that the sequence sign(bi) is non-decreasing in i, necessarily the bi
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are all of the same sign. On the other hand, Lemma 4.1, as applied to (35), leads
to the conclusion that S(b0b1b3b4) = −6, a contradiction.

4.3. The case k = 6

The great majority of our work, if l = 2, is devoted to the situation when k = 6.
The easy part of this case is the following result.

Lemma 4.2. The Diophantine equation

Π(0, 1, 2, 3, 4, 5) = by2, b ∈ {±1,±2,±3,−5,±6,±10,±15, 30} (38)

has no solutions in coprime non-zero integers n and d, with d > 0 and non-zero
integer y.

Proof. Writing

n/d = (x − 5)/2, y = d3v/23,

we find that solutions to (38) correspond to rational points on the genus 2 curve

(x2 − 1)(x2 − 9)(x2 − 25) = bv2.

This genus 2 curve obviously covers the elliptic curves

(X − 1)(X − 9)(X − 25) = bY 2 and (1 − X)(1 − 9X)(1 − 25X) = bY 2.

It is easily checked with a suitable computer algebra package that for each of the
values of b mentioned in the lemma, at least one of these curves has rank 0 and
that its rational points are only the four rational 2-torsion points with Y = 0 or
Y = ∞. These points correspond to solutions with y = 0.

To complete the proof of Theorem 1.2 in case k = 6 and l = 2, it remains to deal
with the values

b ∈ {−30, 5}.

First assume that b = −30. By symmetry, we may suppose that 5 | b0b1b2 (and
consequently, 5 � b3b4b5). We start with the case where 5 | b0. By Lemma 4.1
(equation (36)),

S(b0b1b2b5) = ±30 and S(b0b3b4b5) = ±30.

Thus S(b1b2b3b4) = ±1 which, by Lemma 4.1, gives a contradiction. If 5 | b1 then
Lemma 4.1 leads to the conclusion that S(b2b3b4b5) = 6, whence, from the fact that
b < 0, we have n < 0 and n + d > 0. From (34), we thus have S(b0b2b3b4) = −6
and S(b0b1b2b4) = −5 and so S(b0b5) = −1, whereby b0 = −1 and b5 = 1. From
Lemma 4.1, as applied to (33), we thus have b = −30 and S(b1b2b3b4) = 30. It
follows, then, that b1 = 5 and so S(b2b4) = 1 and b3 = 6, whence

S(b0b1b2b3) = −30,

contradicting Lemma 4.1. If 5 | b2 then by Lemma 4.1, as applied to (35),
S(b0b1b3b4) = −6. As n + 5d > 0, we have n + 2d > 0. Hence n < 0 and n + d > 0.
By Lemma 4.1, we have S(b0b1b2b4) = S(b0b2b3b4) = −5. Thus 3 � b0b1b3b4, which
contradicts S(b0b1b3b4) = −6.
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Finally, let b = 5. In this case, the equation Π6 = by2 defines a hyperelliptic curve
of genus 2, which fails to cover a rank 0 elliptic curve over Q. Further, since the
Jacobian of this curve has Mordell–Weil rank 2, traditional Chabauty-type methods
do not suffice to find the rational points in question. To deal with this situation, we
will apply recent techniques of Bruin and Flynn [6] (cf. [3, 4]). For our purposes,
it will be preferable to consider the isomorphic curve

C : Y 2 = (X − 60)(X − 30)(X + 20)(X + 30)(X + 60).

To see how this is obtained from a solution to Π6 = 5y2, write x = n/d and
t = 5y/d3, so that, after homogenizing, we have

t2z4 = 5x6 + 75x5z + 425x4z2 + 1125x3z3 + 1370x2z4 + 600xz5.

The change of variables

x = −2X + 60Z, t = −60Y, z = X

thus leads to

Y 2Z3 = X5 + 20X4Z − 4500X3Z2 − 90000X2Z3 + 3240000XZ4 + 64800000Z5

or, dehomogenizing, the curve C.

Proposition 4.3. The only rational solutions (X,Y ) to the equation

Y 2 = (X − 60)(X − 30)(X + 20)(X + 30)(X + 60)

are with

X ∈ {−60,−30,−20,−15, 20, 30, 60}.

Proof. Begin by observing that a rational point on C gives rise to a rational
solution to the system of equations

X − 60 = δ1Y
2
1 ,

X − 30 = δ2Y
2
2 ,

X + 20 = δ3Y
2
3 ,

X + 30 = δ4Y
2
4 ,

X + 60 = δ5Y
2
5 ,

for some 5-tuple (δ1, . . . , δ5) where δi ∈ Q∗/Q∗2. In fact, since the roots of the
linear factors are all distinct modulo any prime p outside the set {2, 3, 5}, it can
easily be shown that these {δi} can be taken to be {2, 3, 5}-units. A straightforward
2-descent on JacC (Q) (see for example [7, 40]) shows that the {δi} lie in a group
isomorphic to (Z/2Z)6, generated by

(−3,−5, 5, 15, 5), (3, 1,−1,−15, 5), (2, 5, 1, 5, 2),
(3, 6, 1, 15, 30), (15, 15, 10, 3, 30), (3, 1, 5, 30, 2).

This group corresponds to the 2-Selmer group of the Jacobian of our curve. Since
the torsion part of the Mordell–Weil group of JacC (Q) is generated by

{[(60, 0) −∞], [(30, 0) −∞], [(−20, 0) −∞], [(−30, 0) −∞]},
this implies, upon noting the (independent) divisors [(−15, 3375)−∞] and
[(20, 8000)−∞], of infinite order, that the rank of JacC (Q) is 2. As mentioned
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earlier, this fact ensures that a direct application of traditional Chabauty methods
is not a viable option. To proceed, we will consider covers of C, as in [3, 4].

Note that if the system above has a solution, then this gives rise to a solution to,
say,

(X − 60)(X − 30)(X + 20) = δ1δ2δ3(Y1Y2Y3)2.

Since this equation describes a genus 1 curve and there are obvious rational points
on it, it models an elliptic curve, the Mordell–Weil rank of which we may bound
via 2-descent. If this rank turns out to be zero, then we automatically find only a
finite number of candidate solutions to our original system.

Applying this argument with all choices of three or four equations from the above
system enables us to greatly reduce the possibilities for the 5-tuples {δi}. We readily
verify that, for the choices of {δi} which lead to coverings of rank 0 elliptic curves
over Q, the corresponding torsion points produce no points on C other than those
with Y = 0. Carrying out this procedure for all 64 potential {δi}, we see that there
remain only two possible 5-tuples that lead, in all cases, to elliptic curves of positive
rank, namely

(−3,−5, 5, 15, 5) and (−10,−10, 10, 2, 5).

They correspond to the solutions (X,Y ) = (−15, 3375) and (X,Y ) = (20, 8000),
respectively. This is to be expected: these are non-trivial solutions and, on each
of the covered genus 1 curves, they have no particular reason to map to a torsion
point. Indeed, in each case, they correspond to points of infinite order.

Note also that the original equation has an extra automorphism given by
(X,Y ) 
→ (6−X,Y ) and that these two rational points are interchanged under this
automorphism. Therefore, if we show that the values (X,Y ) = (−15,±3375) are the
only solutions corresponding to the 5-tuple (−3,−5, 5, 15, 5), then we may reach a
similar conclusion, via symmetry, for (X,Y ) = (20,±8000) and (−10,−10, 10, 2, 5).
We will therefore specialize the δi to (−3,−5, 5, 15, 5).

From consideration of the system of equations

−3X + 180 = Z2
1 ,

−5X + 150 = Z2
2 ,

5X + 100 = Z2
3 ,

15X + 450 = Z2
4 ,

5X + 300 = Z2
5 ,

let us therefore adopt the strategy suggested in [6] and analyze the fibre product
of the following two covers of the X-line:

(−5X + 150)(5X + 100)(15X + 450) = (Z1Z2Z3)2 (39)

and

5X + 300 = Z2
5 .

This gives us a V4-extension of the X-line. The fibre-product D is a new curve of
genus 2 with Jacobian isogenous to the product of the elliptic curve (39) and the
quadratic subcover

(−5X + 150)(5X + 100)(15X + 450)(5X + 300) = (Z1Z2Z3Z5)2
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(each of these genus 1 curves has rank 1). Substituting

X =
(
Z2

5 − 300
)
/5

into (39), we obtain a curve isomorphic to

D : −(u2 − 2)(9u2 − 8)(3u2 − 2) = v2.

Arguing as previously, we see that a rational point (u, v) on this curve gives rise to
a solution of the system of equations

3u2 − 2 = v2
1 ,

9u2 − 8 = v2
2 ,

u2 − 2 = −v2
3 .

Again, we might, via products of pairs of these equations, be led to consider elliptic
covers E over Q. The presence of the points (±1,±1) on each of these curves,
however, suggests that they will have positive rank and, indeed, it is easy to verify
that they do. On the other hand, by factoring the above equations, we may obtain
elliptic curves over a suitable ground field extension. This is a useful observation at
this stage because, in such a situation, a rank 1 curve may still permit a successful
Chabauty-type argument.

Let us choose α with α2 = 2 and set K = Q(α). Consider the equations

Q(u) = (u − α)(3u + 2α)

and
R(u) = −9u4 − 3αu3 + 18u2 + 2αu − 8.

Since NormK/Q(Q) = (u2 − 2)(9u2 − 8), if, for u ∈ Q, there are v1, v2, δ ∈ K∗

satisfying
Q(u) = δv2

1 , R(u) = δv2
2 ,

then −NormK/Q(δ) must be a square in Q. Furthermore, it is clear that δ can be
taken to be a square-free {2, 3, 5}-unit in K∗ (or perhaps, to be more precise, we
should say a {α, 3, 5}-unit).

Applying local arguments, restricting u to values in Qp and seeing whether there
are v1, v2 ∈ K ⊗ Qp satisfying the equations above, we find that, in fact, we can
restrict attention to either δ = −α − 1 or δ = α + 1. These are readily seen
to correspond to the points (1,±1) and (−1,±1), respectively. Again, the auto-
morphism (u, v) 
→ (−u, v) interchanges these points. It thus suffices, by symmetry,
to consider only the case where δ = α + 1.

We find, after a little work, that the curve defined by the equation R(u) =
(α + 1)v2

2 is isomorphic to

E : y2 = x3 + 18(1 − α)x2 + 4(3 − 2α)x.

In these coordinates,

u =
(2α − 3)x + (−2α − 2)y − 4α − 19
7x + (2α + 2)y + (−15α − 36)/2

.

The group E(K) = Z×Z/2Z is generated (up to a finite index, prime to 2 · 41) by
g = (4α + 6, 10α + 10) and T = (0, 0). A standard Chabauty-type argument (see
[3, 4]) using the prime 41 shows that 0 and −2g are the only two points in E(K)
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that yield a rational value for u, namely −1. Tracing this backwards, we find that
this corresponds to the point (X,Y ) = (−15,±3375), as claimed. This completes
the proof of Proposition 4.3.

With this proposition in place, it is a simple matter to check that the equation
Π6 = 5y2 has only the non-trivial solutions n ∈ {−1, 6} and d = 1, concluding the
proof of Theorem 1.2 for (k, l) = (6, 2).

4.4. The cases k =7, 8, 9, 10 and 11

To treat the cases 7 � k � 11, it is enough to observe that either there exists
an i with 0 � i � k − 8 for which 7 | n + id (so that 7 divides precisely two
terms of the product Π), or that no such i exists (whence, 2 divides ν7(n + jd) for
0 � j � k−1). In the former case, we may apply our result for k = 6 to the product
Π(i + 1, i + 2, . . . , i + 6) to reach the desired conclusion. In the latter, considering
Π(0, 1, 2, 3, 4, 5) suffices. In particular, we find only the solutions corresponding to
(n, d) = (−7, 2) (with k = 8 or 9) and to (n, d) = (−9, 2) (with k = 9 or 10). This
completes the proof of Theorem 1.2, in case l = 2.

5. Proof of Theorem 1.2 in case l = 3

As noted in § 2, given l and k, finding all coprime solutions n, d to equation
(1) can be accomplished by determining the rational points on a finite number of
algebraic curves. Up to this point, we have essentially relied upon equation (10) to
derive single curves of, for instance, the shape (12). In this section, we will use all
the information at our disposal, noting that a solution to (1), via elimination of n
and d in the corresponding equations (10), implies the existence of a rational point
on the non-singular curve (in Pk−1) Cb,k,l , defined by the equations

(s − t)bry
l
r + (t − r)bsy

l
s + (r − s)bty

l
t = 0,

where {r, s, t} runs through all 3-element subsets of {0, . . . , k−1}. Here, we write b
as shorthand for (b0, . . . , bk−1). We will suppress the dependence on k and l in the
notation, and merely write Cb . For the rest of this section we take l = 3. For any
given triple {r, s, t} ⊂ {0, . . . , k − 1}, we have, as noted previously, a morphism

π{r,s,t} : Cb → D{r,s,t},b ,

(y0 : . . . : yk−1) 
→ (yr : ys : yt),

where D{r,s,t},b is a smooth diagonal plane cubic of the form

D{r,s,t},b : Au3 + Bv3 + Cw3 = 0.

It is convenient, for our purposes, to consider a second morphism

φ : D{r,s,t},b → Eabc ,

(u : v : w) 
→ (a3buvw : a3b2v3 : a2w3),

to the curve

Ed : y2z + dyz2 = x3.
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Since Ed and Ed′ are isomorphic if and only if d/d′ is a cube and, for our
applications, we only need to consider d with P (d) � 5, the following lemma thus
classifies the ranks of Ed(Q) that we encounter.

Lemma 5.1. Let d = 2e23e35e5 for e2, e3, e5 ∈ {0, 1, 2}. For

d ∈ {6, 9, 12, 15, 20, 50, 75, 90, 180, 450, 900}

we have rkEd(Q) = 1. For other values of d we have rk Ed(Q) = 0.

Proof. For each of the 27 possible values of d, the statement is easily checked
with any of the computer algebra systems capable of bounding ranks of elliptic
curves using 2-descent. Alternatively, one could compute the analytic ranks of these
curves and, since we find them to be at most 1, conclude that they must equal the
actual ranks.

For each Cb , it thus suffices to find an elliptic curve Ed of rank 0 which it covers.
For each such rank 0 curve encountered, we may analyze each of the (finitely many)
torsion points T ∈ Ed(Q) and determine the rational points in the 0-dimensional
fibre (φ ◦ π)−1(T ). This is easily done with any modern computer algebra package;
for a Magma [2] transcript of these computations, see [5].

We will now treat the cases 3 � k � 11 in turn. For 3 � k � 5 and l = 3, we
note that Theorem 1.2 appears to be a consequence of Theorems 8 and 9 of [19].
Unfortunately, as we have previously noted, the proofs of these theorems require
modification as they depend upon an incorrect result [19, Lemma 6].

5.1. The case k = 3

To begin, we need to determine the solutions to the equation

n(n + d)(n + 2d) = by3,

for b = 1, 2 and 4. The coprimality of n and d implies that gcd(bi, bj ) | (i − j),
yielding ten possible values for b.

Note that, in this case, Cb is the same as the curve D{0,1,2},b . Furthermore, each
corresponding Ed is of rank 0. The points corresponding to the rational torsion of
Ed lead, after a little work, to the arithmetic progressions (modulo reversion and
(n, d) 
→ (−n,−d))

(−2, 1, 4), (0, 1, 2), (−1, 0, 1) and (1, 1, 1).

5.2. The case k = 4

Here, we have to consider

b ∈ {1, 2, 4, 3, 6, 12, 9, 18, 36}.

Using the coprimality of n and d, these lead to 180 values of b. For most choices
of b, one of the curves D{0,1,2}, D{0,1,3}, D{0,2,3} or D{1,2,3} corresponds to an Ed

of rank 0. A straightforward computation shows that those values of b lead only to
the arithmetic progressions

(0, 1, 2, 3), (−1, 0, 1, 2), (1, 1, 1, 1) and (−3, 1, 1, 3).
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However, for b = (1, 2, 3, 4) or (−6,−1, 4, 9), we find that all corresponding
genus 1 subcovers of Cb have infinitely many rational points. Furthermore, since
(1 : 1 : 1 : 1) ∈ Cb(Q), local considerations also fail to rule out these possibilities.
To proceed, we need to consider other quotients of Cb .

Let us write ζ for a primitive cube root of unity and define morphisms

ζ0 : (y0 : y1 : y2 : y3) 
→ (ζy0 : y1 : y2 : y3),
ζ1 : (y0 : y1 : y2 : y3) 
→ (y0 : ζy1 : y2 : y3),
ζ2 : (y0 : y1 : y2 : y3) 
→ (y0 : y1 : ζy2 : y3).

Obviously, we have

〈ζ0, ζ1, ζ2〉 ⊂ AutQ(Cb).

Writing C for one of C(1,2,3,4) or C(−6,−1,4,9), we note that quotients of C by
subgroups defined over Q yield curves covered by C. For instance, D{1,2,3} � C/〈ζ0〉
and the corresponding Ed is isomorphic to C/〈ζ0, ζ1ζ

2
2 〉.

For our purposes, we will focus on the order 9 subgroup

H = 〈ζ0ζ1, ζ0ζ2〉.

To derive a model for the curve D = C/H, we consider the H-invariant forms
y0y

2
1y2y

2
3 , y3

2 and y3
3 on C. In fact, for b = (1, 2, 3, 4) and

x = 2y2
0y1y

2
2y3

/(
9y6

2 − 8y3
2y3

3

)
,

y =
(
−27y6

2 + 36y3
2y3

3 − 16y6
3

)/(
9y6

2 − 8y3
2y3

3

)
,

we obtain

D : y2 = x6 − 3x3 + 9.

Via a 2-descent in the style of [8], implemented by Stoll in Magma as described
in [40], together with a point search and some canonical height computations (see
[39, 41]), we find that

Jac(D)(Q) � Z/3 × Z/3 × Z.

Using the identification Jac(D)(Q) = Pic0(D/Q) and the convention that ∞+ and
∞− denote the two branches of D above x = ∞, we write

Jac(D)(Q) = 〈[∞+ −∞−], [(0, 3) −∞−], [(2, 7) −∞−]〉,

where the first two generators are of order 3 and the last generates the free part.
Via a standard application of explicit Chabauty-type methods in the style of [15],

implemented in Magma by Stoll, and using p = 7, we compute that D(Q) has at
most six elements and that, in fact,

D(Q) = {∞+,∞−, (0, 3), (0,−3), (2, 7), (2,−7)}.

When we pull back these points along the map

π : (y0 : y1 : y2 : y3) 
→ (x, y),

we see that only (2,−7) lifts to a rational point (1 : 1 : 1 : 1) ∈ C(Q). This
completes the first part of the proof.
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For b = (6, 1, 4, 9) we proceed similarly and, in fact, writing

x = 2y0y
2
1y2y

2
3

/(
8y3

2y3
3 − 9y6

3

)
,

y =
(
16y6

2 − 36y3
2y3

3 + 27y6
3

)/(
8y3

2y3
3 − 9y6

3

)
,

find that C(6,1,4,9) covers the same curve D. Lifting the rational points of D along
the map π yields, again, that only (2,−7) gives rise to a rational point on Cb . This
completes the proof of Theorem 1.2 provided k = 4 and l = 3.

5.3. The case k = 5

If k = 5, dividing Π by one of n or n + 4d necessarily reduces the problem to the
case k = 4. A short calculation shows that no new solutions to (5) accrue.

5.4. The case k = 6

Let k = 6. If 5 � (n + 2d)(n + 3d), then we may apply our result for k = 4 to
Π(i, i + 1, i + 2, i + 3) for one of i = 0, 1 or 2, to conclude that the only solutions to
(5), in this case, are given by

(n, d) = (−5, 2), (−6, 1) and (1, 1).

By symmetry, we may suppose that 5 | n + 2d. This leads to 1976 possible values
for b. For each of these, one of the twenty elliptic curves covered by Cb is of rank
0, whereby we can employ our previous approach. To cut down on the amount of
computation required, however, it is worth noting that one can eliminate most b
from consideration by testing whether Cb(Qp) is non-empty for, say, p = 2, 3 and 7.
This reduces the number of b to treat to eighteen and, for each of these, Cb indeed
has a rational point. These all correspond to the arithmetic progression

(−2,−1, 0, 1, 2, 3).

5.5. The cases k = 7, 8, 9, 10 and 11

For the cases 7 � k � 11, we argue exactly as when l = 2; in all situations,
consideration of one of Π(i + 1, i + 2, . . . , i + 6) suffices to reduce the problem to
the previously treated k = 6. This completes the proof of Theorem 1.2 when l = 3.

6. Proof of Theorem 1.2 in case l = 5

We begin this section by proving a pair of results on ternary Diophantine
equations of signature (5, 5, 5). The first follows from a variety of classical
arguments. The second is a consequence of work of a much more recent vintage,
due to Kraus [21].

Proposition 6.1. Let C be a positive integer with P (C) � 5. If the
Diophantine equation

X5 + Y 5 = CZ5 (40)

has solutions in non-zero coprime integers X, Y and Z, then C = 2 and X =Y =±1.

Proof. Without loss of generality, we may suppose C = 2α3β 5γ with 0� α, β,
γ � 4. By old results of Dirichlet, Lebesgue (see for example [13, p. 735, item 20
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and p. 738, item 37]), and P. Dénes (cf. [12]), for (40) to have a solution in coprime
non-zero integers with XY Z �= ±1, we require C > 2 and

C4 ≡ 1 (mod 52).

This implies that γ = 0 and

(α, β) ∈ {(1, 2), (2, 4), (3, 1), (4, 3)}.
From the fact that both 2 and 3 are primitive roots modulo 5, and the exponent 5
is a regular prime, a classical result of E. Maillet (see for example [13, p. 759, item
167]) leads to the conclusion that 5 � Z. Since, for each remaining value of C, we
have

C4 �≡ 24 (mod 52),

Theorem 1 of Győry [16] thus implies that

r4 ≡ 1 (mod 52),

for every divisor r of C. The parity of the remaining C (whereby we are free to
choose r = 2 above) provides an immediate contradiction and hence the desired
result.

Proposition 6.2. Let A and B be coprime positive integers with AB = 2α3β

for non-negative integers α and β with α � 4. Then the Diophantine equation

AX5 + BY 5 = Z5 (41)

has no solutions in coprime non-zero integers X, Y and Z.

Proof. This is a result of Kraus [21] and is essentially a consequence of the fact
that there are no weight 2, level N cuspidal newforms of trivial character, for N
dividing 6.

We suppose throughout this section that l = 5. In what follows, our arguments
will typically rely upon the fact that a careful choice of identity [q, r, s] leads to
an equation of the form (40). In other cases, such identities imply equations which
may be proven insoluble modulo 11 or 25. We shall employ the trivial observation
that, for k � 11, at most one factor of Πk is divisible by 11.

6.1. The case k = 3

From the identity [0, 1, 2], we deduce a solution in non-zero integers to equation
(40), with P (C) � 2 (and hence C = 2). A short calculation leads to the conclusion
that (n, d) = (−2, 3) or (−4, 3).

6.2. The case k = 4

The following lemma is a more precise version of Theorem 1.2 in case k = 4. It
will prove useful in analyzing larger values of k.

Lemma 6.3. Suppose that there exist non-zero integers n, d, y and b with b and
d positive and gcd(n, d) = 1, satisfying

Π4 = by5 with P (b) � 3. (42)
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Then either (n, d) = (−3, 2) or, up to symmetry,

(b0, b1, b2, b3) = (4, 3, 2, 1) or (9, 4, 1, 6). (43)

It is likely that (n, d) = (−9, 5), (−6, 5), (−4, 1), (−3, 2) and (1, 1) are the only
solutions of (42).

Proof. Let us suppose we have a solution to (42) in non-zero integers n, d, y
and b, with b, d > 0 and gcd(n, d) = 1. If 3 fails to divide the product bibi+1bi+2 for
either i = 0 or i = 1, we may reduce immediately to the case k = 3. We may thus
assume, via symmetry, that either 3 | b0 and 3 | b3, or that 3 | b1. In the first case,
if ν3(b0b3) = 2, the identity [0, 1, 3] implies a non-trivial solution to an equation
of the form X5 + Y 5 = 2αZ5 and hence, after a little work, a contradiction via
Proposition 6.1. We may thus suppose, again by symmetry, that 9 | b0. Further,
unless 2 | n + d, we may apply the same identity [0, 1, 3] to deduce a non-trivial
solution to

X5 + Y 5 = 2α3β Z5, (44)

contrary to Proposition 6.1. Combining the identities [0, 1, 2] and [0, 2, 3] with
Proposition 6.2, we may assume that ν2((n + d)(n + 3d)) = 3. If ν2(n + d) = 1,
then [1, 2, 3] leads to a solution to (44) with α = β = 1. If, on the other hand,
ν2(n + 3d) = 1, from the fact that

t5 ≡ 0,±1 (mod 11), for t ∈ Z,

the identity [1, 2, 3] implies that Π(1, 2, 3) is not divisible by 11. It follows from
[0, 1, 3] that ν3(n) = 2 (whereby (b0, b1, b2, b3) is just (9, 4, 1, 6)).

If, however, 3 | b1, then [0, 1, 2] and Proposition 6.1 imply that we may suppose
2 | n, whereby, again combining [1, 2, 3], [0, 1, 3] and Proposition 6.2, we may assume
that ν2(n(n + 2d)) = 3. In case ν2(n) = 1, [0, 2, 3] leads to a solution to (44) with
β = 1, a contradiction. If ν2(n) = 2, the same identity [0, 2, 3] implies that 11 fails
to divide n + 2d and so, modulo 11, from [0, 1, 2], we are able to conclude that
ν3(b1) = 1, whence

(b0, b1, b2, b3) = (4, 3, 2, 1). �

6.3. The case k = 5

Let k = 5 and suppose that we have a non-trivial solution to (5). Then applying
Lemma 6.3 to Π(0, 1, 2, 3) and Π(1, 2, 3, 4), we see either that n + id = −3 and
d = 2 for i = 0 or 1 (which fails to yield a solution to (5)) or that both 4-tuples
(b0, b1, b2, b3) and (b1, b2, b3, b4) are in the set

{(1, 2, 3, 4), (4, 3, 2, 1), (6, 1, 4, 9), (9, 4, 1, 6)}.

Since this is readily seen to be impossible, we conclude that equation (5) has no
solutions in this case.

6.4. The case k = 6

As in case l = 2 or 3, most of our work in proving Theorem 1.2 is concentrated,
if l = 5, in treating k = 6. Let us suppose we have a non-trivial solution to (5) with
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P (b) � 5. If 5 fails to divide the product b0b1b2b3b4b5, then, omitting the factor
n + 5d in Π6, we reduce to the case k = 5 and hence find no new solutions.

By symmetry, it suffices to deal with the cases when 5 | n, 5 | n + d or 5 | n + 2d.
We consider them in turn.

6.4.1. 5 divides n. First assume that 5 | n and hence also 5 | n + 5d. Then,
applying Lemma 6.3 to Π(1, 2, 3, 4), we infer that either n + d = −3 and d = 2
(which gives the solution (n, d) = (−5, 2)), or we have, again up to symmetry,

(b1, b2, b3, b4) = (4, 3, 2, 1) or (9, 4, 1, 6).

Consider the identity

3(n + d)(n + 4d) − 2(n + 2d)(n + 3d) = n(n + 5d). (45)

If (b1, b2, b3, b4) = (4, 3, 2, 1), (45) implies a non-trivial solution to (40), contra-
dicting Proposition 6.1. If, however, (b1, b2, b3, b4) = (9, 4, 1, 6), (45) leads to an
equation of the form

34X5 + 22Y 5 = 5tZ5

where t � 2 and 5 � XY . Working modulo 25 and taking 4th powers, we deduce
the congruence

316 ≡ 28 (mod 52),

and hence a contradiction.

6.4.2. 5 divides n + d. Consider now the case when 5 | n + d. We apply
Lemma 6.3 to Π(2, 3, 4, 5). It is clear that n + 2d = −3 and d = 2 does not provide
a further solution to (5). We thus have

(b2, b3, b4, b5) ∈ {(4, 3, 2, 1), (1, 2, 3, 4), (9, 4, 1, 6), (6, 1, 4, 9)}.

In the first of these cases, necessarily b0 = 2 · 3t for a non-negative integer t. From
the identity [2, 3, 4], we find that

2y5
2 + y5

4 = 3y5
3

and hence 11 fails to divide y2y3y4. Similarly, [1, 3, 4] yields the conclusion that y1

is coprime to 11, whereby, from [1, 2, 3] and its companion equation

5ν5(b1)y5
1 + 3y5

3 = 8y5
2 ,

we may conclude not only that ν5(b1) = 1 (so that b1 = 5), but also

y5
2 ≡ y5

3 ≡ ±1 (mod 11).

Applying [0, 2, 3], then, we obtain a solution to the equation

3ν3(b0)−1y5
0 + y5

3 = 2y5
2 , (46)

and find, working modulo 11, that necessarily ν3(b0) = 1. Applying Proposition 6.1
to (46), we have XY Z = ±1. From this, we obtain the solution (n, d) = (−6, 1) to
(5) (together with the symmetrical solution (1, 1)).
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If we have (b2, b3, b4, b5) equal to either (1, 2, 3, 4) or (9, 4, 1, 6), then the identities
[0, 1, 2] and [0, 2, 4], respectively, lead to non-trivial solutions to (40), contradicting
Proposition 6.1. Finally, if (b2, b3, b4, b5) = (6, 1, 4, 9), then [0, 1, 5] implies that

2ν2(b0)+2y5
0 ≡ 9y5

5 (mod 25)

and so, taking 4th powers, we conclude that ν2(b0) = 2. This, together with [0, 2, 4],
contradicts Proposition 6.1.

6.4.3. 5 divides n + 2d. Finally, consider the case where 5 | b2. In light of the
identity {0, 1, 3, 4} and Proposition 3.1, we may suppose that 3 | n(n + d). First,
assume that 3 | n. The identity [1, 3, 5] implies a non-trivial solution to (40) unless
4 | n + d. Under this assumption, [0, 3, 4] and Proposition 6.1 yield the conclusion
that ν3(n) � 2, whence ν3(n + 3d) = 1 (and so b3 = 6). From [2, 3, 4], we deduce
that

5ν5(b2)y5
2 + y5

4 = 12y5
3 ,

whereby, upon consideration modulo 52, ν5(n + 2d) = 1. Analyzing the same
equation, modulo 11, implies that 11 | y2. It follows, then, from the identity [0, 2, 4],
that

3ν3(b0)y5
0 + y5

4 = 10y5
2 .

Modulo 11, we therefore have ν3(b0) = 0 and hence contradict Proposition 6.1.
The last case to consider in this subsection is when 5 | b2 and 3 | n + d. From

[3, 4, 5] and Proposition 6.1, we may assume that 2 | n + d, whence, applying a like
argument with [0, 1, 3], we necessarily have ν2(n + d) = 1. Identity [0, 1, 4], again
with Proposition 6.1, gives ν3(n + 4d) � 2 (so that ν3(n + d) = 1 and b1 = 6).
Applying [0, 1, 2] thus leads to the equation

y5
0 + 5ν5(b2)y5

2 = 12y5
1 .

Modulo 52 and 11, we again find that ν5(b2) = 1 and that 11 | y2. To conclude,
then, we apply the identity [0, 2, 4] which yields

y5
0 + 3ν3(b4)y5

4 = 10y5
2 .

This implies, modulo 11, that ν3(b4) = 0 and so, via Proposition 6.1, a contradiction.

6.5. The cases k = 7, 8, 9, 10 and 11

Again, we argue as for l = 2 or 3, applying our results for k = 6 to one of
Π(i, i + 1, . . . , i + 5). This completes the proof of Theorem 1.2.

7. Proofs of Theorem 1.5 and Corollary 1.6

Having dispatched Theorem 1.2, we will now present the proof of Theorem 1.5.
The reason we proceed in this order is that the techniques introduced in this section
will prove useful in the subsequent treatment of Theorem 1.4.

Proof of Theorem 1.5. If k � 11, Theorem 1.5 is an immediate consequence of
Theorem 1.2 (without any conditions upon d). We thus assume that k � 12 and
that l � 2 is prime. For the π(k) prime values of l � k, we may apply Theorem 6
of [19] (a slight generalization of Corollary 2.1 of [10], itself a nice application of



powers from terms in arithmetic progression 299

Falting’s Theorem) to conclude that (5) has finitely many solutions as claimed. We
may thus suppose that l > k.

Since d �≡ 0 (mod Dk ) (recall definition (7)), there exists a prime in the interval
[k/2, k) which is coprime to d and hence divides y. Define p to be the largest such
prime. From (5), since gcd(n, d) = 1 and P (b) < k/2, it follows that either

(i) p | n + id for precisely one i with 1 � i � k − 2, or
(ii) p | n + id and p | n + (i + p)d, for some i with 0 � i � k − 1 − p.
In case (i), the identity {i − 1, i, i, i + 1} leads to a ternary equation of the form

(14) where C = 1 and A, B, u and v are non-zero integers with P (AB) < p and
p | uv. We associate to this equation, as in the proof of Proposition 3.1, a Frey
elliptic curve E/Q, with corresponding mod l Galois representation ρE

l . Again, this
arises from a cuspidal newform f of weight 2, trivial Nebentypus character and
level N . Here, from Lemma 3.2 of [1], N divides

N1 = 64 ·
∏
q<p

q,

where the product is over prime q. Since p | uv and p is coprime to lN , our Frey
curve E has multiplicative reduction at p and so we may conclude, as in the proof
of Proposition 3.1, that

NormKf /Q (ap ± (p + 1)) ≡ 0 (mod l),

where Kf is the field of definition for the Fourier coefficients an of f . By the Weil
bounds for ap , we have

l � (p + 1 + 2
√

p)g+
0 (N ) (47)

where g+
0 (N) denotes the dimension of the space of weight 2, level N cuspidal

newforms of trivial character (as a C-vector space).
Similarly, in case (ii), we have the identity {i, i + j, i + p− j, i + p}, where we are

free to choose any j with 1 � j � (p− 1)/2. If n(n + d) is odd, p = 7 and k = 12 or
13, we will take j = 3 whereby the above identity leads to a ternary equation of the
shape (14) with coprimes A, B and C satisfying ABC ≡ 1 (mod 2), P (AB) < 7,
C ∈ {1, 3} and 7 | uv. Otherwise, we take j = 2 (if n(n + d) is even) or j = 4
(if n(n + d) is odd). These choices lead to equations (14) with P (AB) < p, p − j
divisible by C, gcd(AB,C) = 1 and p | uv. Since l > k, in each case we may argue
as previously to deduce the existence of a cuspidal newform f of weight 2, trivial
Nebentypus character and level N dividing either 1440 or

N2 = 64 ·
∏

q1<p

q1 ·
∏

q2|p−j

q2

where again the products are over qi prime. Arguing as before, we once more obtain
inequality (47).

From Martin [24], we have, for any N ,

g+
0 (N) � N + 1

12
and, via Schoenfeld [34], ∑

p�x

log p < 1.000081x,
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valid for all x > 0. It follows, by routine computation, that

g+
0 (N) < e1.05p

and hence, from (47), that

log l < 3p < 3k .

Since k is fixed, this leaves us with finitely many pairs (k, l) to consider. Again, via
Theorem 6 of [19], we may conclude that, for each pair (k, l) �= (3, 2), equation (5)
has at most finitely many coprime solutions with (6). This therefore completes the
proof of Theorem 1.5.

Proof of Corollary 1.6. To deduce Corollary 1.6, suppose now that d≡
0 (mod Dk ) (and, again, that l > k). Since it is easy to show that the left-hand
side of (5) is divisible by every prime q � k coprime to d, it follows, on writing

Pk = π(k − 1) − π

(
k − 1

2

)
,

that

Pk � ω(d) � D. (48)

By the Prime Number Theorem, Pk is asymptotically k/(2 log k), as k → ∞.
Applying Chebyshev-type estimates for π(x), say those of Rosser and Schoenfeld
[29], we may show that

Pk � k

3 log k
if k � 18.

From our lower bound (8) for k, we therefore have

Pk � 2D log D

log (6D log D)
> D,

for k � 18, contradicting (48). For 12 � k � 17 and (via inequality (8)) D ∈ {1, 2},
we check to see whether inequality (48) is satisfied, obtaining a contradiction in all
cases except when D = 2 and k = 12, 13, 15, 16 or 17. For each of these, Pk = 2
and so the fact that y fails to have a prime divisor p with k/2 � p < k implies that

d =
{

7α11β if k = 12, 13,
11α13β if k = 15, 16, 17,

where α and β are positive integers. Theorem 2 of Saradha and Shorey [32], however,
shows that d necessarily has a prime divisor congruent to 1 (mod l). It follows that
l ∈ {2, 3, 5}, contradicting l > k. This completes the proof of Corollary 1.6.

8. Finiteness results for 12 � k � 82

In this section, we will present the proof of Theorem 1.4. We begin by noting that
if P and Q are consecutive primes and if we know that equation (5) has finitely
many solutions with k = 2P + 1 and (6), then a similar result is immediately
obtained for

k = 2P + 2, 2P + 3, . . . , 2Q.
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Indeed, for any of these values of k, if Πk is divisible by a prime in the interval
[Q, k], then Theorem 1.5 implies the desired result. We may thus suppose, if p | Πk ,
that either p > k or p � P . It follows that we can write

Π(0, 1, . . . , 2P + 1) = BY l

for non-zero integers B and Y with P (B) � P , whereby the result follows, as
claimed, from the case k = 2P + 1. To prove Theorem 1.4, we may, in light of
Theorem 1.2, restrict attention to

k ∈ {15, 23, 27, 35, 39, 47, 59, 63, 75},
where we further suppose that Πk is coprime to Dk . Now, for each prime 3 � p � P ,
there are p + 1 possibilities: either p | n + sd for some 0 � s � p − 1, or p fails to
divide Π (that is, p | d). Analyzing these

N(P ) =
∏

3�p�P

(p + 1) (49)

cases, for each k under consideration (actually, symmetry allows us to reduce this
number somewhat), we note that if we can find integers i � 0 and j � 1 such that
6j + i � k − 1 and

gcd


Π(i, 3j + i, 6j + i),

∏
3�p�P

p


 ∈ {1, 11, 19}, (50)

then {i, 3j + i, 3j + i, 6j + i} leads to an equation of the form (22). We obtain a
similar conclusion if there exist i � 0 and j � 1 with 10j + i � k − 1, for which

gcd


Π(i, j + i, 9j + i, 10j + i),

∏
3�p�P

p


 ∈ {1, 11, 19} (51)

(where we employ the identity {i, j + i, 9j + i, 10j + i}).

8.1. The case k = 15

For k = 15 (that is, if P = 7), a short search indicates that we can find i and
j for which (50) or (51) holds, unless p | n + ipd for p ∈ {3, 5, 7} where ip are as
shown in Table 3.

Table 3.

Case (i3, i5, i7) Case (i3, i5, i7) Case (i3, i5, i7)

(i) (2, 4, 6) (v) (0, 3, 4) (ix) (2, 4, 0)
(ii) (1, 3, 5) (vi) (2, 2, 3) (x) (1, 3, 6)
(iii) (0, 2, 4) (vii) (1, 1, 2) (xi) (1, 1, 1)
(iv) (2, 1, 3) (viii) (0, 0, 1) (xii) (0, 0, 0)

By symmetry, we may suppose that we are in one of the cases (i), (ii), (iii), (iv),
(ix) or (x). In case (i), {1, 3, 10, 12} implies an equation of the form (18) with D = 2
if Π is odd, and (15) with β = 0 if Π is even, unless, in this latter case, we have

max{ν2(n + id) : i = 1, 3, 10, 12} = 2. (52)
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It follows, in this situation, that {2, 3, 11, 12} leads to equation (15) with α � 2,
unless 9 | n+2d. If we assume, then, that 9 | n+2d, {5, 7, 8, 10} implies an equation
of the form (15) with β = 0, unless

max{ν2(n + id) : i = 5, 7, 8, 10} = 2. (53)

Combining (52) and (53), we may thus assume that ν2(n + 10d) = 2, whereby
{5, 8, 9, 12} leads to an equation of the form (20), completing the proof in case (i).

In cases (ii), (ix) and (x), we argue in an identical fashion as for case (i), only
with the identities

{1, 3, 10, 12}, {2, 3, 11, 12}, {5, 7, 8, 10} and {5, 8, 9, 12}
replaced by

{0, 2, 9, 11}, {1, 2, 10, 11}, {4, 6, 7, 9}, {4, 7, 8, 11}, in case (ii),
{1, 3, 10, 12}, {2, 3, 11, 12}, {3, 5, 6, 8}, {1, 4, 5, 8}, in case (ix)

and
{0, 2, 9, 11}, {1, 2, 10, 11}, {2, 4, 5, 7}, {0, 3, 4, 7}, in case (x).

In case (iii) (respectively case (iv)), the identity {1, 5, 10, 14} (respectively
{0, 4, 9, 13}) leads to the conclusion that

max{ν2(n + id) : i = 1, 5, 10, 14} = 3

whence {8, 9, 9, 10}, {2, 5, 5, 8}, {7, 10, 10, 13} and {3, 6, 6, 9} (respectively
{7, 8, 8, 9}, {1, 4, 4, 7}, {6, 9, 9, 12} and {2, 5, 5, 8}) lead to equations of the shape
(21) with p ∈ {3, 5}. This completes the proof of Theorem 1.4 if k = 15 (that is,
for k � 22).

8.2. The cases k ∈ {23, 27, 35, 39}
A (reasonably) short calculation reveals that for each of the N(P ) possibilities

with P ∈ {11, 13, 17}, we can always find i and j satisfying (50) or (51). If P = 19
(so that k = 39), then we are left with, up to symmetry, the cases listed in Table 4
to consider (where, as previously, p | n + ipd).

Table 4.

Case i3 i5 i7 i11 i13 i17 i19

(i) 1 0 3 6 1 9 6
(ii) 1 0 4 1 8 9 17
(iii) 0 4 3 0 7 8 16
(iv) 2 3 2 10 6 7 15

In the first of these {8, 11, 33, 36} leads immediately to an equation of the shape
(15) with β = 1. In the remaining three,

{2 − i, 6 − i, 29 − i, 33 − i}
(for i = 0, 1 or 2, respectively) implies a solution to equation (15) with (α, β) =
(0, 1), if Π is odd. If, however, Π is even, the identity

{28 − i, 29 − i, 37 − i, 38 − i}
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leads to equation (15) with α � 2 and β = 1, unless 9 | n + (28 − i)d. In this case,
the identity

{13 − i, 14 − i, 16 − i, 17 − i}
thus leads to equation (22) with p = 19. This completes the proof for k = 39 (and
hence for k � 46).

8.3. The cases k ∈ {47, 59, 63, 75}
We verify via Maple that, for each of the N(P ) possibilities with P ∈ {23, 29}, we

can always find i and j satisfying (50) or (51). For P = 31 (that is, k = 63), there
are again some possibilities that elude our sieve (the computation is now becoming
rather more substantial). These 28 cases correspond, after symmetry, to p | n + ipd
for ip as shown in Table 5.

Table 5.

Case i3 i5 i7 i11 i13 i17 i19 i23 i29 i31

(i) 0 3 5 1 7 1 18 2 14 10
(ii) 2 2 4 0 6 0 17 1 13 9
(iii) 0 3 5 1 7 15 18 14 16 10
(iv) 2 2 4 0 6 14 17 13 15 9
(v) 1 1 3 8 5 15 11 4 8 23
(vi) 0 0 2 7 4 14 9 3 7 22
(vii) 2 4 1 6 3 13 8 2 6 21
(viii) 1 1 3 8 5 15 8 4 1 23
(ix) 0 3 5 10 7 14 13 6 10 25
(x) 2 2 4 9 6 13 12 5 9 24
(xi) 0 0 2 3 4 14 9 3 7 22
(xii) 2 4 1 2 3 13 8 2 6 21
(xiii) 0 3 5 10 7 14 10 6 3 25
(xiv) 2 2 4 9 6 13 9 5 2 24

Our arguments will prove similar in each case. From an initial identity of the
form {p, q, r, s}, we will conclude that 8 | n + id for some i congruent, modulo 8, to
p+4, q+4, r+4 or s+4. For each of these possibilities, one of a collection of 4 (or 2)
secondary identities of the shape {p1, q1, q1, r1} then implies a non-trivial solution
to an equation of the form (21), contradicting Proposition 3.1. For example, in case
(i), {31, 32, 49, 50} implies the desired conclusion unless

max{ν2(n + id) : i = 31, 32, 49, 50} = 2.

This hypothesis ensures that 8 | n + id for one of i = 3, 4, 5, 6 which, with
the identities {6, 11, 11, 16}, {11, 20, 20, 29}, {4, 13, 13, 22} and {29, 30, 30, 31},
contradicts Proposition 3.1. For the remaining cases, we choose our identities as
indicated in Tables 6 and 7.

Table 6.

Case Initial identity 8 | n + id

(i) {31, 32, 49, 50} i = 3, 4, 5, 6
(iii) {2, 4, 29, 31} i = 0, 2, 3, 5

(v), (viii) {12, 14, 60, 62} i = 4, 6
(ix), (xiii) {16, 17, 34, 35} i = 4, 5, 6, 7

(xi) {11, 13, 59, 61} i = 3, 5
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Table 7.

Case Secondary identities

(i) {6, 11, 11, 16}, {11, 20, 20, 29}, {4, 13, 13, 22}, {29, 30, 30, 31}
(iii) {21, 24, 24, 27}, {27, 42, 42, 57}, {2, 11, 11, 20}, {4, 13, 13, 22}

(v), (viii) {13, 28, 28, 43}, {9, 22, 22, 35}
(ix), (xiii) {1, 4, 4, 7}, {16, 37, 37, 58}, {17, 22, 22, 27}, {2, 23, 23, 44}

(xi) {6, 19, 19, 32}, {8, 13, 13, 18}

In case (ii), (iv), (vi), (vii), (x), (xii) and (xiv), we argue as for (i), (iii), (v), (ix)
and (xi), but with {p, q, r, s} replaced, in each case, by {p− i, q − i, r − i, s− i} for
i = 1 or i = 2. This completes the proof of Theorem 1.4, for 63 � k � 74.

To finish the proof of Theorem 1.4, it remains to handle the case k = 75. In this
situation, after lengthy calculations (carried out in Maple on a Beowulf cluster at
Simon Fraser University), we conclude that there always exist i and j satisfying
either (50) or (51). The code utilized in this computation is available from the
authors on request.

9. Concluding remarks

Presumably, the cases 2 � l � 5 in Theorem 1.2 may be sharpened with a more
careful combinatorial analysis, at least if (k, l) �= (4, 2) or (3, 3). As far as we can
tell, the statement, for large prime values of l, essentially reflects the limitations
of our method. An extension of Theorem 1.2 to larger values of k would be a
reasonably routine matter if one had available a full set of Galois conjugacy classes
of weight 2 cuspidal newforms at larger levels than currently present in [38]. Proving
an analog of Theorem 1.4 for larger k is also certainly possible via the techniques
described herein; to some degree, at this stage, the problem is primarily a matter
of combinatorics.
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